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Post-translation modification of proteins involves phosphorylation

and glycosylation, which is an essential biological process to mature

their functions N-glycosides attached to asparagines attposi-

tion through gs-glycosidic bond are found in various membrane
proteins and play significant roles in biological processes on the
cell surface. To elucidate the biological role of these glycoproteins,
their partial fragments, such a$glycopeptides, have served as
effective biochemical probes and are attractive synthetic tafgets.
Therefore, an effective methodology for the synthesis of the various
N-glycosyl peptides is required.

Most of the established methodologies for linking asparagines
and saccharides through an N-glycosidic bond to provide
glycopeptidesdl involve amidation of the asparaginic addwith
the glycosylamines4 or its equivalent (Scheme 1, path B).
However, the3-glycosylamined are sufficiently unstable not only
to epimerize at the anomeric position but also to hydrolyze to the
lactol during the reaction. Furthermore, the asparaginic adid
peptides easily undergoes cyclization to afford the corresponding
succinimide by activation of the carbonyl grdugpath C). To
minimize succinimide formation, careful control of the reaction
conditions is required. On the other hand, biological synthetic
processes dfl-glycoproteins involve N-glycosylation of the primary
amides2 with donor3 (path A). The biosynthetic pathway suggests
an efficient and alternative approach for the chemical synthesis of
variousN-glycosyl amided from the corresponding stable amides
2.5 However, it is worth noting that the nitrogen of the amide group
showed very poor nucleophilicity toward glycosylation. Addition-
ally, O-glycosylation of the amide could also lead to a considerable
side reaction. In 1989, Kahne et al. reported that the coupling of a
N-silyl acetamide with a perbenzyl galactosyl sulfoxide provided
a-N-glycosyl acetamide as a major prod@éfThe N-trimethylsilyl
group enhances the nucleophilicity of the amide nitrogen. However,
the preparation ol-silyl asparagines is a difficult task because of
their instability.
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Table 1. N-Glycosylation of Acetamide 10 with the Galactosyl
Imidates 6a—9a
H,N_Me
OBn T
BnO o g OBn
BnO &g ;O O\[rcxs 10 (1.0 equiv) 50 & o H "
., OBz NR! activator big
(1.5 equiv) . 0Bz g
(0.2 equiv)
6a:X=F,R=Ph 0°Ctort. 11:R2=Me
7a:X=F, R =p-MeOCgH, 12:R2=CCly
8a:X=F,R=p-FCgH,
9a:X=Cl,R=H
entry donor activator solvent yield of 11 (%)
1 6a TMSOTf CHsNO, 98
2 6a TMSOTf CH:CN 70
3 6a TMSOTf EtCN 85
4 6a TMSOTf CH.Cl, 46
5 Ta TMSOTf CHNO, 66
6 8a TMSOTf CHNO, 75
7 9ac TMSOTf CHNO, 42
8 6a TESOTf CHNO; 53
9 6a TBSOTf CHNO2 87
107 6a TMSOTf CHNO, 71b

awith 1.5 equiv of acceptor used as base on dd@@P The yield was
estimated based on don6a.

In this communication, we have demonstrated the stereoselectivedue to its steric hindrance. Both TESOTf and TBSOTf were found

synthesis of glycosyl amino acids and peptides by N-glycosylation
of primary amides without any amide activating groups. As
illustrated in Table 1, treatment of acetamiti@with 1.5 equiv of

the glycosylS-N-phenyltrifluoroacetoimidat®a® in the presence

of a catalytic amount of TMSOTf at room temperature in ni-
tromethan® provided the glycosyl acetamidd. in excellent yield
with completes-selectivity (entry 1). Dichloromethane did not work
well in the N-glycosylation as a solvent (entry 4). Both electron-
withdrawing and -donating groups on the leaving group reduced
the yield of11*! (entries 5 and 6). Use ai-trichloroacetoimidate
9al? as a donor provided the glycosyl acetamiddn dramatically
reduced yield (42%) along with a significant amount of the glycosyl
trichloroacetamidel2 (entry 7). The yield ofl2 was 80% based
on donor9a. N-substitution of the trifluoroimidate prevented the
released trifluoroacetamide from being glycosylated with the donor
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not to be effective for the N-glycosylation as a promoter in
comparison with TMSOT( (entries 8 and 9). Use of excess acceptor
10 provided glycosyl amide in good yield based on the ddder
(entry 10).

We next investigated N-glycosylation of the protected asparagine
13A with S-glycosyl imidates6a—e'? (Table 2). The galactosyl,
glucosyl, and mannosyl imidate8a—c attached with an acyl
protecting group at the C2 position and underwent N-glycosylation
to form the 1,2-trans glycosidic bond, providing the corresponding

-N-glucosyl, 3-N-galactosyl, anda-N-mannosy#® asparagines
g Yy g Yy parag

14aA—14cA in excellent yields (9498%) (entries +3). The
N-Troc glucosaminesd'4 was stereoselectively converted to the
correspondingN-glycosyl asparagine$4dA in moderate yields
(68%) with completes-selectivity (entry 4). On the other hand,
glycosidation of the perbenzyl-protected galactoséerovided

10.1021/ja0450298 CCC: $30.25 © 2005 American Chemical Society
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Table 2. N-Glycosylation of Asparagin 13A and Peptides 13B and

% tripeptides in nitromethane. To our knowledge, this is the first
13C with Glycosyl Donors 6a—e

example of the synthesis BEglycosyl peptides by N-glycosylation

JOL of nonactivated primary amides.
0 o oF HoN""R! o o In conclusion, we have demonstrated the efficient and elegant
= Eph 8 13 t\\NJLW synthesis of N-glycosides by N-glycosylation of asparagine-
) 0.2 equiv TMSOTf H containing peptides with glycosiN-phenyltrifluoroimidates utiliz-
6 (1.5equv)  CHNO, 0°Ctort 14 ing a catalytic amount of TMSOTf in nitromethane. This coupling
=0, = method allows for the synthesis of the varidéglycosyl amides
~ from the primary amide derivatives, which are effective biochemical
OBn i i i
B1O— 8o 087 B?]réo&g\/ BnO 5 probes for elucidation of the role of glycopeptides.
ngc&ﬁ/ ng)o’ﬁﬁ/ B”OTrocHN BnOéﬁv Supporting Information Available: Experimental procedures for
OBz BnO the N-glycosylation and full characterization for compounds. This
b c d e material is available free of charge via the Internet at http://pubs.acs.org.
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